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Introduction.

1. THE existence of ‘magnetism is recognized by certain phenomena of force which
are attributed to it as their cause. Other physical effects are found to be produced
by the same agency; as in the operation of magnetism with reference to polarized
light, recently discovered by Mr. Farapay; but we must still regard magnetic force
as the characteristic of magnetism, and, however interesting such other phenomena
may be in themselves, however essential a knowledge of them may be for enabling
us to arrive at any satisfactory ideas regarding the physical nature of magnetism,
and its connection with the general properties of matter, we must still consider the
investigation of the laws, according to which the development and the action of
magnetic force are regulated, to be the primary object of a Mathematical Theory in
this branch of Natural Philosophy.

2. Magnetic bodies, when put near one another, in general exert very sensible
mutual forces; but a body which is not magnetic, can experience no force in virtue
of the magnetism of bodies in its neighbourhood. It may indeed be observed that a
body, M, will exert a force upon another body A; and again, on a third body B ;
although when A and B are both removed to a considerable distance from M, no
mutual action can be discovered between themselves: but in all such cases A and B
are, when in the neighbourhood of M, temporarily magnetic ; and when both are
under the influence of M at the same time, they are found to act upon one another
with a mutual force. All these phenomena are investigated in the mathematical
theory of magnetism, which therefore comprehends two distinct kinds of magnetic
action :—the mutual forces exercised between bodies possessing magnetism, and the
magnetization induced in other bodies through the influence of magnets. The First
Part of this paper is confined to the more descriptive and positive details of the sub-
ject, with reference to the former class of phenomena. After a sufficient foundation
has been laid in it, by the mathematical exposition of the distribution of magnetism
in bodies, and by the determination and expression of the general laws of magnetic
force, a Second Part will be devoted to the theory of magnetization by influence, or
magnetic induction.
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244 PROF. W. THOMSON ON THE MATHEMATICAL THEORY OF MAGNETISM.

FIRST PART.—ON MAGNETS, AND THE MUTUAL FORCES BETWEEN MAGNETS.

Cuartir 1. Preliminary Definitions and Explanations.

3. A magnet is a substance which intrinsically possesses magnetic properties.

A piece of loadstone, a piece of magnetized steel, a galvanic circuit, are examples of the varieties
of natural and artificial magnets at present known; but a piece of soft iron, or a piece of bismuth
temporarily magnetized by induction, cannot, in unqualified terms, be called a magnet.

A galvanic circuit is frequently, for the sake of distinction, called an ¢ electro-magnet ; but,
according to the preceding definition of a magnet, the simple term, without qualification, may be
applied to such an arrangement. On the other hand, a piece of apparatus consisting of a galvanic coil,
with a soft iron core, although often called simply “ an electro-magnet,” is in reality a complex
arrangement involving an electro-magnet (which is intrinsically magnetic as long as the electric cur-
rent is sustained) and a body transiently magnetized by induction.

4. In the following analysis of magnets, the magnetism of every magnetic sub-
stance considered, will be regarded as absolutely permanent under all circumstances.
This condition is not rigorously fulfilled either for magnetized steel or for loadstone,
as the magnetism of any such substance is always liable to modification by induction,
and may therefore be affected either by bringing another magnet into its neighbour-
hood, or by breaking the mass itself and separating the fragments. When, however,
‘we consider the magnetism of any fragment taken from a steel or loadstone magnet,
the hypothesis will be that it retains without any alteration the magnetic state
which it actually had in its position in the body. The general theory of the distribu-
tion of magnetism founded upon conceptions of this kind, will be independent of the
truth or falseness of any such hypothesis which may be made for the sake of con-
venience in studying the subject; but of course any actual experiments in illustration
of the analysis or synthesis of a magnet would be affected by a want of rigidity in
the magnetism of the matter operated on. For such illustrations, electro-magnets
are extremely appropriate, as in them, except during the motion by which any
alteration in their form or arrangement is effected, no appreciable inductive action
can exist.

5. In selecting from the known phenomena of magnetism those elementary facts
which are to serve for the foundation of the theory, all complex actions, depending
on the irregularities of the bodies made use of, should be excluded. Thus if we were
to attempt an experimental investigation of the action between two amorphous frag-
ments of loadstone, or between two pieces of steel magnetized by ordinary processes,
we should probably fail to recognize the simple laws on which the actions, resulting
from such complicated circumstances, depend ; and we must look for a simpler case
of magnetic action before we can make an analysis which may lead to the establish-
ment of the fundamental principles of the theory. Much complication will be
avoided if we take a case in which the irregularities of one at least of the bodies do
not affect the phenomena to be considered. Now the earth, as was first shown by
GILBERT, is a magnet; and.its dimensions are so great that there is no sensible
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variation in its action on different parts of any ordinary magnet upon which we can
experiment, and consequently, in the circumstances, no complicacy depending on the
actual distribution of terrestrial magnetism. We may therefore, with advantage,
commence by examining the action which the earth produces upon a magnet of any
kind at its surface.

6. At a very early period in the history of magnetic discovery, the remarkable
property of “pointing north and south ” was observed to be possessed by fragments
of loadstone and magnetized steel needles. To form a clear conception of this
phenomenon, we must consider the total action produced by the earth upon a magnet
of any kind, and endeavour to distinguish between the effects of gravitation which
the earth exerts upon the body in virtue of its weight, and those which result from
the magnetic agency.

7. In the first place, it is to be remarked that the magnetic agency of the ealth
gives rise to no resultant force of sensible magnitude, upon any magnet with reference
to which we can perform experiments, as is proved by the following observed facts.

(1.) A magnet placed in any manner, and allowed to move with perfect freedom in any horizontal
direction (by being floated, for example, on the surface of a liquid), experiences no action which
tends to set its centre of gravity in motion, and there is therefore no horizontal force upon the
body. ,

(2.) The magnetism of a body may be altered in any way, without affecting its weight as indicated
by a balance. Hence there can be no vertical force upon it depending on its magnetism.

8. It follows that any magnetic action which the earth can exert upon a magnet
must be a couple. To ascertain the manner in which this action takes place, let us
conceive a magnet to be supported by its centre of gravity* and left perfectly free to
turn round this point, so that without any constraint being exerted which could
balance the magnetic action, the body may be in circumstances the same as if it were
without weight. The magnetic action of the earth upon the magnet gives rise to the
following phenomena :—

(1.) The body does not remain in equilibrium in every position in which it may be brought to
rest, as it would do did it experience no action but that of gravitation.

(2.) If the body be placed in a position of equilibrium, there is a certain axis (which, for the pre-
sent, we may conceive to be found by trial), such, that if the body be turned round it, through any

angle, and be brought to rest, it will remain in equilibrium.
(3.) If the body be turned through 180°, about an axis perpendicular to this, it will again be in

a position of equilibrium.

* The ordinary process for finding experimentally the centre of gravity of a body, fails when there is any
magnetic action to interfere with the effects of gravitation. It is, however, for our present purpose, sufficient
to know that the centre of gravity exists; that is, that there is a point such that the vertical line of the resultant
action of gravity passes through it, in whatever position the body be held. If it were of any consequence, a
process, somewhat complicated by the magnetic action, for actually determining, by experiment, the centre of
gravity of a magnet might be indicated, and thus the experimental treatment of the subject in the text would

be completed.
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(4.) Any motion of the body whatever, which is not of either of the kinds just described, nor
compounded of the two, will bring it into a position in which it will not be in equilibrium.

(5.) The directing couple esperienced by the body in any position depends solely on the angle of
inclination of the axis described in (1.) to the line along which it lies when the body is in equili-
brium ; being independent of the position of the plane of this angle, and of the position of the body
with reference to that axis.

9. From these observations we draw the conclusion that a magnet always expe-
riences a directing couple from the earth, unless a certain axis in the body is placed
in a determinate position. This line in the body is called its magnetic axis*.

10. The direction towards which the magnetic axis of the body tends in virtue of
the earth’s action, is called “ the line of dip,” or “ the direction of the total terrestrial
magnetic force,” at the locality of the observation.

11. No further explanation regarding phenomena which depend on terrestrial
magnetism is required in the present chapter; but, as the facts have been stated in
part, it may be right to complete the statement, as far as regards the action expe-
rienced by a magnet of any kind when held in different positions in a given locality,
by mentioning the following conclusions, deduced in a very obvious manner from
the general laws of magnetic action stated below, and verified fully by experiment.

~If a magnet be held with its magnetic axis inclined at any angle to the line of dip,
it will experience a couple, the moment of which is proportional to the sine of the
angle of inclination, acting in a plane containing the magnetic axis and the line of
dip. The position of equilibrium towards which this couple tends to bring the mag-
netic axis is stable, and if the direction of the magnetic axis be reversed, the body
may be left balanced, but it will be in unstable equilibrium.

12. The directive tendency observed in magnetic bodies, being found to depend on
their geographical position, and to be related in some degree to the terrestrial poles,
received the name of polarity ; probably on account of a false hypothesis of forces
exercised by the pole-star- or by the earth’s poles, upon certain points of the load-
stone or needle, thence called the “ poles of the magnet.” . The terms  polarity ” and
“ poles ” are still retained, but the use of them which has very generally been made,
is nearly as vague as the ideas from which they had their origin. Thus when the
magnet is an elongated mass, its ends are called poles if its magnetic axis be in the
direction of its length ; no definite points, such as those in which the surface of the
body is cut by the magnetic axis, being precisely indicated by the term as it is

* Any line in the body parallel to this might, with as good reason, be called a magnetic axis, but when we
conceive the magnet to be supported by its centre of gravity, the magnetic axis is naturally taken as a line
through this point.

1 In the poem of Guiot de Provence (quoted in WrewEeLL’s History of the Inductive Sciences, vol. ii. p. 46),
a needle is described as being magnetized and placed in or on a straw (floating on water it is to be presumed)—

‘¢ Puis se torne la pointe toute
Contre 'estoile sans doute.”
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generally used. If, however, the body be symmetrical about its magnetic axis, and
symmetrically magnetized, whether elongated in that direction or not, the poles
might be definitely the ends of the magnetic axis (or the points in which the surface
is cut by it), unless the magnet be annular and not cut by its magnetic axis (a ring
electro-magnet, for instance), in which case the ordinary conception of poles fails.
Notwithstanding this vagueness, however, the terms poles and polarity are extremely
convenient, and, with the following explanations, they will frequently be made use
of in this paper.

13. Let O be any point in a magnet, and let N O S be a straight line parallel to
the line defined above as the magnetic axis through the centre of gravity. If the
point O, however it has been chosen, be called the centre of the magnet, the line
NS, terminated either at the surface, on each side, or in any arbitrary manner, is
called the magnetic axis, and the ends, N, S, of the magnetic axis are called the poles
of the magnet*. : "

14. That pole (marked N) which points, on the whole, from the north, and in
northern latitudes upwards, is called the north pole, and the other (S), which points
from the south, is called the south pole.

15. The sides of the body towards its north pole and south pole, are said to possess
“ northern polarity ” and “southern polarity ” respectively, an expression obviously
founded on the idea that the surface of a magnet may in general be contemplated as
a locus of poles.

16. If a magnetic body be broken up into any number of fragments, each morsel
is found to be a complete magnet, presenting in itself all the phenomena of poles
and polarity. This property is generally contemplated when, in modern writings
on physical subjects, polarity is mentioned as a property belonging to a solid body ;
and a corresponding idea is involved in the term when it is applied with reference to
the electric state which Mr. Farapay discovered to be induced in non-conductors of
electricity (“ dielectric ”), when subjected to the influence of electrified bodies+.
However different are the physical circumstances of magnetic and electric polarity,
it appears that the positive laws of the phenomena are the samey, and therefore the
mathematical theories are identical. Either subject might be taken as an example of
a very important branch of physical mathematics, which might be called “ A Mathe-
matical Theory of Polar Forces.”

17. Although we have seen that any magnet, in general, experiences from the earth
an action subject to certain very simple laws, yet the actual distribution of the mag-
netism which it possesses may be extremely irregular. We may certainly conceive

* A definition of poles at variance with this is adopted in some special cases, especially in that of the earth
considered as a great magnet, but the manner in which the term will be used in this paper will be such as to
produce no confusion on this account.

1 Farapay’s Experimental Researches in Electricity, Eleventh Series.

t See a paper “ On the Elementary Laws of Statical Electricity,” published in the Cambridge and Dublin
Mathematical Journal (vol. i.) in December 1845.
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that if the magnetized substance be a regular crystal of magnetic iron ore, the mag
netism is distributed through it according to some simple law; but by taking an
amorphous and heterogeneous fragment of ore presenting magnetic properties, by
magnetizing in any way an irregular mass of steel, by connecting any number of
morsels of magnetic matter so as to make up a complex magnet, or by bending a
galvanic wire into any form, we may obtain magnets in which the magnetic property
is distributed in any arbitrary manner, however irregular. Excluding for the present
the last-mentioned case, let us endeavour to form a conception of the distribution of
magnetism in actually magnetized matter, such as steel or loadstone, and to lay down
the principles according to which it may in any instance be mathematically ex-
pressed.

18. In general we may consider a magnet as composed of matter which is mag-
netized throughout, since, in general, it is found that any fragment cut out of a mag-
netic mass is itself a magnet possessing properties entirely similar to those which
have been described as possessed by any magnet whatever. It may be however that
a small portion cut out of a certain position in a magnet, may present no magnetic
phenomena; and if we cut equal and similar portions from different positions, we
may find them to possess magnetic properties differing to any extent both in intensity,
and in the directions of their magnetic axes.

19. If we find that equal and similar portions, cut in parallel directions, from any
different positions in a given magnetic mass, possess equal and similar magnetic pro-
perties, the mass is said to be uniformly magnetized.

20. In general, however, the intensity of magnetization must be supposed to vary
from one part to another, and the magnetic axes of the different parts to be not
parallel to one another. Hence, to lay down determinately a specification of the dis-
tribution of magnetism through a magnet of any kind, we must be able to express
the infensity and the direction of magnetization at each point. Before attempting to
define a standard for the numerical expression of intensity in magnetization, it will
be convenient to examine the elementary laws upon which the phenomena of mag-
netic force depend, sirce it is by these effects that the nature and energy of the mag-
netism to which they are due must be estimated.

Cuarrer 1. On the Laws of Magnetic Force, and on the Distribution of
Magnetism in Magnetized Matter.

21. The object of the elementary magnetic researches of CouLomB was the deter-
mination of the mutual action between two infinitely thin, uniformly and longitudi-
nally magnetized bars. The magnets which he used were in strictness neither uni-
formly nor longitudinally magnetized, such a state being unattainable by any actual
process of magnetization ; but, as the bars were very thin cylindrical steel wires, and
were syminetrically magnetized, the resultant actions were sensibly the same as if
they were in reality infinitely thin, and longitudinally magnetized ; and from experi-
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ments which he made, it appears that the intensity of the magnetization must have
been very nearly constant from the middle of each of the bars, to within a short
distance from either end, where a gradual decrease of intensity is sensible*.

22. These circumstances having been attended to, CourLoms was able to deduce
from his experiments the true laws of the phenomena, and arrived at the following
conclusions :— '

(1.) If two thin uniformly and longitudinally magnetized bars be held near one
another, an action is exerted between them which consists of four distinct forces,
along the four lines joining their extremities.

(2.) The forces between like ends of the two bars are repulsive-j.

(3.) The forces between unlike ends are attractive.

(4.) If the bars be held so that the four distances between their extremities, two
and two, are equal, the four forces between them will be equal.

(5.) If the relative positions of the bars be altered, each force will vary inversely
as the square of the mutual distance of the poles between which it acts.

23. To establish a standard for estimating the stremgth of a magnet, let us con-
ceive two infinitely thin bars to be placed so that either end of one may be a unit of
distance from an end of the other. Then, if the bars be equally magnetized, each
uniformly and longitudinally, to such a degree that the force between those ends
shall be unity, the strength of each bar-magnet is unity }.

24, If any number, m, of such unit bars, of equal length, be put with like ends to-
gether, so as to constitute a single complex bar, the strength of the magnet so formed
is denoted by m.

If there be any number of thin bar-magnets of equal length, and each of them of
such a strength that ¢ of them, with like ends together, would constitute a unit-bar;
and if p of those bars be put with like ends together, the strength of the complex

magnet so formed will be %

25. If a single infinitely thin bar be magnetized to such a degree that in the same
positions it would produce the same effects as a complex bar of any strength m (an
integer or fraction), the strength of this magnet is denoted by m.

26. If two complex bar-magnets, of the kind described above, be put near one an-

* See note on § 38, below.

+ Hence we see the propriety of the terms north and south applied to the opposite polarities of a magnet, as
explained above. Thus we designate the polarity, or the imaginary magnetic matter, of the northern and
southern magnetic hemispheres of the earth, as northern and southern respectively ; and since the poles of ordi-
nary magnets which are repelled by the earth’s northern or southern polarity must be similar, these also are
called northern or southern, as the case may be.

1 The Royal Society in its Instructions for making observations on Terrestrial Magnetism adopts one foot
as the unit of length; and, that force which, if acting on a grain of matter, would in one second of time gene-
rate one foot per second of velocity, as the unit of force; which is consequently very nearly 33 of the weight,
in any part of Great Britain or Ireland, of one grain.

MDCCCLI. 2k
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other, each bar of one will act on each bar of the other with the same forces as if all
the other bars were removed. Hence, if the distance between the two poles be unity,
and if the strengths of the bars be respectively m and m/, (whether these numbers be
integral or fractional,) the force between those poles will be mm'. If, now, the rela-
tive position of the magnets be altered, so that the distance between two poles may
be £, the force between them will, according to CourLoms’s law, be

mm!

"F.
According to the definition given above of the strength of a simple bar-magnet, it
follows that the same expression gives the force between two poles of any thin, uni-
formly and longitudinally magnetized bars, of strengths m and m'.

27. The magnetic moment of an infinitely thin, uniformly and longitudinally mag-
netized bar, is the product of its length into its strength.

28. If any number of equally strong, uniformly and longitudinally magnetized
rectangular bars of equal infinitely small sections, be put together, with like ends
towards the same parts, a complex uniformly magnetized solid of any form may be
produced. The magnetic moment of such a magnet is equal to the sum of the mag-
netic moments of the bars of which it is composed.

29. The magnetic moment of any continuous solid, uniformly magnetized in
parallel lines, is equal to the sum of the magnetic moments of all the thin, uniformly
and longitudinally magnetized bars into which it may be divided.

It follows that the magnetic moment of any part of a uniformly magnetized mass
is proportional to its volume.

30. The intensity of magnetization of a uniformly magnetized solid is the magnetic
moment of a unit of its volume.

It follows that the magnetic moment of a uniformly magnetized solid, of any form
and dimensions, is equal to the product of its volume into the intensity of its mag-
netization.

31. If a body be magnetized in any arbitrary, regular or irregular manner, a por-
tion may be taken in any position, so small in all its dimensions that the distribution
of magnetism through it will be sensibly uniform. The quotient obtained by dividing
the magnetic moment of such a portion, in any position P, by its volume, is the in-
tensity of magnetization of the substance at the point P; and a line through P parallel
to its lines of magnetization, is the direction of magnetization, at P.

Cuarrer IIL. On the Imaginary Magnetic Matter by means of which the Polarity
of a Magnetized Body may be represented.

32. It will very often be convenient to refer the phenomena of magnetic force to
attractions or repulsions mutually exerted between portions of an imaginary mag-
netic matter, which, as we shall see, may be conceived to represent the polarity of a
magnet of any kind. This imaginary substance possesses none of the primary qualities
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of ordinary matter, and it would be wrong to call it either a solid, or the “ magnetic
fluid,” or “fluids”; but, without making any hypothesis whatever, we may call it
‘““magnetic matter,” on the understanding that it possesses only the property of -
attracting or repelling magnets, or other portions of “matter ” of its own kind, ac-
cording to certain determinate laws, which may be stated as follows :—

(1.) There are two kinds of imaginary magnetic matter, northern and southern, to
represent respectively the northern and southern magnetic polarities of the earth, or
the similar polarities of any magnet whatever.

(2.) Like portions of magnetic matter repel and unlike portions attract, mutually.

(3.) Any two small portions of magnetic matter exert a mutual force which varies
inversely as the square of the distance between them.

(4.) Two units of magnetic matter, at a unit of distance from one another, exert a
unit of force, mutually.

33. If quantities of magnetic matter be measured numerically in such units, and
if the positive or negative sign be prefixed to denote the species of matter, whether
northern (which, by convention, we may call positive) or southern, all the preceding
laws are expressed in the following proposition :—

If quantities, m and ', of magnetic matter be concentrated respectively at points at
a distance, f, from one another, they will repel with a force algebraically equal to

mm'
T

34. It appears from the explanations given above, that the circumstances of a
uniformly magnetized needle may be represented if we imagine equal quantities of
northern and southern magnetic matter to be concentrated at its two poles, the
numerical measure of these equal quantities being the same as that of the “strength”
of the magnet.

The mutual action between two needles would thus be reduced to forces of attrac-
tion and repulsion between the portions of magnetic matter by which their poles are
represented.

35. Any magnetic mass whatever may, as we have seen, be regarded as composed
of infinitely small bar-magnets put together in such a way as to produce the distribu-
tion of magnetism which it actually possesses; and hence, by replacing the poles of
these magnets by imaginary magnetic matter, we obtain a distribution of equal
quantities of northern and southern magnetic matter through the magnetized sub-
stance, by which its actual magnetic condition may be represented. The distribution
of this matter becomes very much simplified from the circumstance that we have in
general unlike poles of the elementary magnets in contact, by which the opposite
kinds of magnetic matter are partially (or in a class of cases wholly*) destroyed
through the interior of the body. The determination of the resulting distribution of

* In all cases when the distribution is “solenoidal.” See below, Chap. V. § 68. Communicated to the
Royal Society, June 20, 1850.
2K2
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magnetic matter, which represents in the simplest possible manner the polarity of
any given magnet, is of much interest, and even importance, in the theory of mag-
netism, and we may therefore make this an object of investigation, before going
farther.

36. Let it be required to find the distribution of imaginary magnetic matter to repre-
sent the polarity of any number of uniformly magnetized needles, S;N,,S,N,,... S, N,
of strengths w,, w,, ... w, respectively, when they are placed together, end to end (not
necessarily in the same straight line).

If A denote the position occupied by S, when the bars are in their places; if N,
and S, are placed in contact at K,; N, and S,, at K,; and so on until we have the
last magnet, with its end S,, in contact with N,,_;, at K,_,, and its other end, N,, free,
at a point B; we shall have to imagine

@, units of southern magnetic matter to be placed at A
w, units of northern, and w, units of southern matter at K, ;
t, units of northern, and p, of southern matter at K, ;

fn—; units of northern, and w, of southern matter at K,_;;
and lastly,  u, units of northern matter at B.

Hence the final distribution of magnetic matter is as follows :—

—fy o+ v+ o« o« o« . . . . atA

Pr—fhge o e e Ky

T |
Popr=lon + o« o e oo K

and . P « « « « « « « . . . . B.

37. The complex magnet AKK,...K,_,B consists of a number of parts, each of
which is uniformly and longitudinally magnetized, and it will act in the same way as
a simple bar of the same length, similarly magnetized ; and hence the magnetic matter
which represents a bar-magnet AB of this kind is concentrated in a series of points,
at the ends of the whole bar, and at all the places where there is a variation in the
strength* of its magnetization.

38. If the length of each part through which the strength of the magnetism is
constant, be diminished witkout limit, and if the entire number of the parts be in-
creased indefinitely, a straight or curved infinitely thin bar may be conceived to be
produced, which shall possess a distribution of longitudinal magnetism varying con-
tinuously from one end to the other according to any arbitrary law. If the strength
of the magnetism at any point P of this bar be denoted by w, and if [] and () denote

* This expression is equivalent to the product of the intensity of magnetization into the section of the bar ; and
by retaining it we are enabled to include cases in which the bar is not of uniform section.
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the values of » at the points A and B, the investigation of § 36, with the elementary
principles and notation of the differential calculus, leads at once to the determination
of the ultimate distribution of magnetic matter by which such a bar-magnet may be
represented. Thus if AP be denoted by s; g will be a function of s, which may be sup-
posed to be known, and its differential coefficient will express the continuous distri-
bution of magnetic matter which replaces the group of material points at K,, K,, &c. ;
so that the entire distribution of polarity in the bar and at its ends will be as follows :—
in any infinitely small length, s, of the bar, a quantity of matter equal to
. I
— g,
and, besides, terminal accumulations, of quantities

—[p]at A
and (w) at B.

It follows that if through any part of the length of a bar, the strength of the mag-
netism is constant, there will be no magnetic matter to be distributed through this
portion of the magnet; but if the strength of the magnetism varies, then, according
as it diminishes or increases from the north to the south pole of any small portion,
there will be a distribution of northern or southern magnetic matter to represent the
polarity which results from this variation.

Corresponding inferences may be made conversely, with reference to the distribu-
tion of magnetism, when the distribution of the imaginary magnetic matter is known.
Thus Couroms found that his long thin cylindrical bar-magnets acted upon one
another as if each had a symmetrical distribution of the two kinds of magnetic matter,
northern within a limited space from one end, and southern within a limited space
from the other, the intermediate space (constituting generally the greater part of the
bar) being unoccupied ; from which we infer that no variation in the magnetism was
sensible through the middle part of the bar, but that, through a limited space on
each side, the intensity of the magnetization must have decreased gradually towards
the ends*.

39. The distribution of magnetic matter which represents the polarity of a uni-
formly magnetized body of any form, may be immediately determined if we imagine

* This circumstance was alluded to above, in § 21. Interesting views on the subject of the distribution
of magnetism in bar-magnets are obtained by taking arbitrary examples to illustrate the investigation of the
text. Thus we may either consider a uniform bar variably magnetized, or a thin bar of varying thickness, cut
from a uniformly magnetized substance; and according to the arbitrary data assumed, various .remarkable
results may be obtained. We shall see afterwards that any such data, however arbitrary, may be actually pro-
duced in electro-magnets, and we have therefore the means of illustrating the subject experimentally, in as
complete a manner as can be conceived, although from the practical non-rigidity of the magnetism of magnetized
substances, ordinary steel or loadstone magnets would not afford such satisfactory illustrations of arbitrary
cases as might be desired. The distribution of longitudinal magnetism in steel needles actually magnetized in
different ways, and especially ¢ magnetized to saturation,” has been the object of interesting experimental and
theoretical investigations by Couroms, Bror, Greey and Rigss.
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it divided into infinitely thin bars, in the directions of its lines of magnetization ; for
each of these bars will be uniformly and longitudinally magnetized, and therefore
there will be no distribution of matter except at their ends. Now the bars are all
terminated on each side by the surface of the body, and consequently the whole
magnetic effect is represented by a certain superficial distribution of northern and
southern magnetic matter. It only remains to determine the actual form of this
distribution ; but, for the sake of simplicity in expression, it will be convenient to
state previously the following definition, borrowed from CouLomp’s writings on elec-
tricity.

40. If any kind of matter be distributed over a surface, the superficial density at
any point is the quotient obtained by dividing the quantity of matter on an infinitely
small element of the surface in the neighbourhood of that point, by the area of the
element.

41. To determine the superficial density at any point in the case at present under
consideration, let » be the area of the perpendicular section of an infinitely thin uni-
form bar, of the solid, with one end at that point. Then, if ¢ be the intensity of
magnetization of the solid, i» will be, as may be readily shown, the “strength” of the
bar-magnet. Hence at the two ends of the bar we must suppose to be placed quan-
tities of northern and southern imaginary magnetic matter each equal to iw. In the
distribution over the surface of the given magnet, these quantities of matter must be
imagined to be spread over the oblique ends of the bar. Now if ¢ denote the incli-
nation of the bar to a normal to the surface through one end, the area of that end

will be (—}-60-;—6;, and therefore in that part of the surface we have a quantity of matter
equal to i» spread over an area c—:?a-. Hence the superficial density is

7€0s8 0.

This expression gives the superficial density at any point, P, of the surface, and its
algebraic sign indicates the kind of matter, provided the angle denoted by ¢ be
taken between the external part of the normal, and a line drawn from P in the same
direction as that of the motion of a point carried from the south pole, to the north
pole, of a portion close to P, of the infinitely thin bar-magnet which we have been
considering.

42. Let it be required, in the last place, to determine the entire distribution of
magnetic matter necessary to represent the polarity of any given magnet.

‘We may conceive the whole magnetized mass to be divided into infinitely small
parallelepipeds by planes parallel to three planes of rectangular coordinates. Let
x, 3, v denote -the three edges of one of these parallelepipeds having its centre at a
point P (x,y, z). Let% denote the given intensity, and /, m, n the given direction
cosines of the magnetization at P. It will follow from the preceding investigation
that the polarity of this infinitely small, uniformly magnetized parallelepiped, may be
represented by imaginary magnetic matter distributed over its six faces in such a
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manner that the density will be uniform over each face, and that the quantities of
matter on the six faces will be as follows :—

—il.By, and ¢/.By; on the two faces parallel to YOZ;
—im .y, and im.ye; on the two faces parallel to ZOX ;
—in.oB, and in.eB; on the two faces parallel to XOY.

Now if we consider adjacent parallelepipeds of equal dimensions, touching the six
faces of the one we have been considering, we should find from each of them a second
distribution of magnetic matter, to be placed upon that one of those six faces which
it touches. Thus if we consider the first face By, or that of which the distance from

YOZ is x— % «; we shall have a seconddistribution upon it derived from a parallelepiped

the coordinates of the centre of which are x—e, y, z; and the quantity of matter in
this second distribution will be

o d(
i+~ e
This, added to that which was found above, gives
d(il d(i
G (=), or =gy

for the total amount of matter upon this face. Again, the quantity in the second
distribution on the other face, 3y, is equa.l to

—{it+ % ale
and therefore the total amount of matter on this face will be
d(il)
- ef3y.
By determining in a similar way the final quantities of matter on the other faces of
the parallelepiped, we find that the total amount of matter to be distributed over its

surface is W "
{dx +0 zm)_l_ dz)} B

Now as the parallelepipeds into which we imagine the whole mass divided are infinitely
small, we may substitute a continuous distribution of matter through them, in place
of the superficial distributions on their faces which have been determined ; and in
making this substitution, the quantity of matter which we must suppose to be spread
through the interior of any one of them must be half the total quantity on its surface,
since each of its faces is common to it and another parallelepiped. Hence the
quantity of matter to be distributed through the parallelepiped By is equal to

[l ) S,

Besides this continuous distribution through the interior of the magnet, there must



256 PROF. W. THOMSON ON THE MATHEMATICAL THEORY OF MAGNETISM.

be a superficial distribution to represent the neutralized polarity at its surface. Ife
denote the density of this distribution at any point; [/], [m], [»] the direction
cosines, and [¢] the intensity of the magnetization of the solid close to it; and &, p, »
the direction cosines of a normal to the surface, we shall have, as in the case of the
uniformly magnetized solid previously considered, '

e=[i] cos 0=[il] .a+[im].p+[in].v . . . . . . . . . (D).
If, according to the usual definition of “ density,” k denote the density of the magnetic

matter at P, in the continuous distribution through the interior, the expression found
above for the quantity of matter in the element «, 3, ¥, leads to the formula

d@l) | d(im)  d(in)

== @,
These two equations express respectively the superficial distribution, and the con-
tinuous distribution through the solid, of the magnetic matter which entirely repre-
sents the polarity of the given magnet. The fact that the quantity of northern matter
is equal to the quantity of southern in the entire distribution, is readily verified by
showing from these formulee, as may readily be done by integration, that the total
quantity of matter is algebraically equal to nothing.

43. If there be an abrupt change in the intensity or direction of the magnetization
from one part of the magnetized substance to another, a slight modification in the
formulee given above will be convenient. Thus we may take a case differing very
little from a given case, but which instead of presenting finite differences in the in-
tensity or direction of magnetization, on the two sides of any surface in the substance
of the magnet, has merely very sudden continuous changes in the values of those
elements : we may conceive the distribution to be made more and more nearly the
same as the given distribution, with its abrupt transitions, and we may determine the
limit towards which the value of the expression (2) approximates, and thus, although
according to the ordinary rules of the differential calculus this formula fails in the
limiting case, we may still derive the true result from it. It is very easily shown in
this way, that, besides the continuous distribution given by the expression (2) applied -
to all points of the substance for which it does not fail, there will be a superficial dis-
tribution of magnetic matter on any surface of discontinuity ; and that the density of
this superficial distribution will be the difference between the products of the intensity
of magnetization into the cosine of the inclination of its direction to the normal, on
the two sides of the surface.

44. This result, obtained by the interpretation of formula (2) in the extreme case,
might have been obtained directly from the original investigation, by taking into ac-
count the abrupt variation of the magnetization at the surface of discontinuity, as we
did the abrupt termination of the magnetized substance at the boundary of the mag-
net, and representing the un-neutralized polarity which results, by a superficial dis-
tribution of magnetic matter.
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Cuarrer IV. Determination of the Mutual Actions between any Given Portions
of Magnetized Matter.

45. The synthetical part of the theory of magnetism has for its ultimate object the
determination of the total action between two magnets, when the distribution of .
magnetism in each is given. The principles according to which the data of such a
problem may be specified have been already laid down (§§ 28-31.), and we have seen
that, with sufficient data in any case, CouLomp’s laws of magnetic force are sufficient
to enable us to apply ordinary statical principles to the solution of the problem.
Hence the elements of this part of the theory may be regarded as complete, and we
may proceed to the mathematical treatment of the subject.

46. The investigations of the preceding chapter, which show us how we may con-
ventionally represent any given magnet, in its agency upon other bodies, by an ima-

“ginary magnetic matter distributed on its surface and through its interior ; enable us
to reduce the problem of finding the action between any two magnets, to the known
problem of determining the resultant of the attractions or repulsions exerted between
the particles of two groups of matter, according to the law of force which is met with
so universally in natural phenomena. The direct formulee applicable for this object
are so readily obtained by means of the elementary principles of statics, and so well
known, that it is unnecessary to cite them here, and we may regard equations (1) and
(2) of the preceding chapter (§ 42.) as sufficient for indicating the manner in which
the details of the problem may be worked out in any particular case. The expression
for the “ potential,” and other formule of importance in Larrace’s method of treat-
ing this subject, are given below (§ 51.), as derived from the results expressed in
equations (1) and (2).

47. The preceding solution of the problem althouvh extremely simple and often
convenient, must be regarded as very artificial, since in it the resultant action is
found by the composition of mutual actions between the particles of an imaginary
magnetic matter, which are not the same as the real mutual actions between the
different parts of the magnets themselves, although the resultant action between the
entire groups of matter is necessarily the same as the real resultant action between
the entire magnets. Hence it is very desirable to investigate another solution, of a
less artificial form, in which the required resultant action may'be obtained by com-
pounding the real actions between the different parts into which we may conceive the
magnets to be divided. The remainder of the chapter, after some preliminary explana-
tions and definitions, will be devoted to this object.

48. The “resultant magnetic force at any point” is an expression which will very
frequently be employed in what follows, and it is therefore of importance that its
signification should be clearly defined. For this purpose, let us consider separately
the cases of an external point in the neighbourhood of a magnet, and a point in
space which is actually occupied by magnetic matter.

MDCCCLI. 2L
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(1.) The resultant force at a point in space, void of magnetized matter, is the force
that the north pole of a unit-bar (or a positive unit of imaginary magnetic matter), if
placed at this point, would experience.

(2.) The resultant force at a point situated in space occupied by magnetized matter,
is an expression the signification of which is somewhat arbitrary. If we conceive the
magnetic substance to be removed from an infinitely small space round the point, the

preceding definition would be applicable; since, if we imagine a very small bar-mag-

net to be placed in a definite position in this space, the force upon either end would
be determinate. The circumstances of this case are made clear by considering the
distribution of imaginary magnetic matter required to represent the given magnet,
without the small portion we have conceived to be removed from its interior ; which
will differ from the distribution that represents the entire given magnet, in wanting
the small portion of the continuous interior distribution corresponding to the removed
portion, and in having instead a superficial distribution on the small internal surface
bounding the hollow space. If we consider the portion removed to be infinitely
small, the want of the small portion of the solid magnetic matter will produce no
finite effect upon any point; but the superficial distribution at the boundary of the
hollow space will produce a finite force upon any magnetic point within it. Hence
the resultant force upon the given point round which the space was conceived to be
hollowed, may be regarded as compounded of two forces, one due to the polarity of
the complete magnet, and the other to the superficial polarity left free by the removal
of the magnetized substance*. The former component is the force meant by the
expression “the resultant force at a point within a magnetic substance,” when em-
ployed in the present paper+-.

49. The conventional language and ideas with reference to the imaginary magnetic

* If the portion removed be spherical and infinitely small, it may be proved that the force at any point within
it, resulting from the free polarity of the solid at the surface bounding the hollow space, is in the direction of

the lines of magnetization of the substance round it, and is equal to 4%-3 This theorem (due to Poisson) will

be demonstrated at the commencement of the Theory of Magnetic Induction, because we shall have to consider
the ‘* magnetizing force” upon any small portion of an inductively magnetized substance as the actual
resultant force that would exist within the hollow space that would be left if the portion considered were re-
moved, and the magnetism of the remainder constrained to remain unaltered.

1 If we imagine a magnet to be divided into two parts by any plane passing through the line of magnetiza-
tion at any internal point, P, and if we imagine the two parts to be separated by an infinitely small interval
and a unit north pole to be placed between them at P, the force which this pole would experience is “ the re-
sultant force at a point, P, of the magnetic substance.” This is the most direct definition of the expression that
could have been given, and it agrees with the definition I have actually adopted; but I have preferred the ex-
planation and statement in the text, as being practically more simple, and more directly connected with the
various investigations in which the expression will be employed.

[Note added June 15, 1850.—Some subsequent investigations on the comparison of common magnets and
electro-magnets have altered my opinion, that the definition in the text is to be preferred; and I now believe
the definition in the note to present the subject in the simplest possible manner, and in that which, for the
applications to be made in the continuation of this Essay, is most convenient on the whole.]



PROF. W. THOMSON ON THE MATHEMATICAL THEORY OF MAGNETISM. 259

matter, explained above ({§ 32-44), enable us to give the following simple statement
of the definition, including both the cases which we have been considering.

The resultant magnetic force at any point, whether in the neighbourhood of a mag-
net or in its interior, is the force that a unit of northern magnetic matter would expe-
rience if it were placed at that point, and if all the magnetized substance were re-
placed by the corresponding distribution of imaginary magnetic matter.

50. The determination of the resultant force at any point is, as we shall see, much
facilitated by means of a method first introduced by Larrace in the mathematical
treatment of the theory of attraction, and developed to a very remarkable extent by
GreEN in his “ Essay on the Application of Mathematical Analysis to the Theories of
Electricity and Magnetism” (Nottingham, 1828), and in his other writings on the
same and on allied subjects in the Cambridge Philosophical Transactions, and in the
Transactions of the Royal Society of Edinburgh. Larrace’s fundamental theorem
is so well known that it is unnecessary to demonstrate it here; but for the sake of
reference, the following enunciation of it is given. The term “ potential,” defined in
connection with it, was first introduced by Green in his Essay (1828). It was at a
later date introduced independently by Gauss, and is now in very general use.

Theorem (Larrace).—The resultant force produced by a body, or a group of at-
tracting or repelling particles, upon a unit particle placed at any point P, is such that
the difference between the values of a certain function, at any two points p and p'in-
finitely near P, divided by the distance pp/, is equal to its component in the direction
of the line joining p and p'.

Definition (GReeN).—This function, which, for a given mass, has a determinate
value at any point, P, of spa‘ce, is called the potential of the mass, at the point P.

It follows from the general demonstration, that, when the law of force is that of the
inverse square of the distance, the potential is found by dividing the quantity of
matter in any infinitely small part of the mass, by its distance from P, and adding
all the quotients so obtained.

51. The same demonstration is applicable to prove, in virtue of CourLoms’s funda-
mental laws of magnetic force, the same theorem with reference to any kind of
magnet that can be conceived to be composed of uniformly magnetized bars, either
finite or infinitely small, put together in any way, that is, of any magnet other than
an electro-magnet ; and the investigation, in the preceding chapter, of the resulting
distribution of magnetic matter that may be imagined as representing in the simplest
possible way the polarity of such a magnet, enables us to determine at once, from
equations (1) and (2) of § 42, its potential at any point. Thus if V denote the poten-
tial at a point P, whose coordinates are £, , {; and if dS denote an element of the
surface of the magnet, situated at a point whose coordinates are [«], [y], [z], we
have, by the proposition enunciated at the end of § 49,—

d(il) d( ) d(in)

v=//" [zl]A+[zm]u+[m]vdS [ o “ dedydz, . . . . . (3)
2L

2
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where A and [A] are respectively the distances of the points z,y,2 and [z,y, 2] from
the point P, and are given by the equations
Al=(E—a)’+(1—y)*+((—=)?
[AT2=(t—[2])2+(r— [¥])*+ (&~ [=])>

The double and triple integrals in the first and second terms of this expression are to
be taken respectively over the whole surface bounding the magnet, and throughout
the entire magnetized substance. Since, as is easily shown, the value of that portion
of the triple integral in the second member which corresponds to an infinitely small
portion of the solid containing (£, 7, {’), when this point is internal, is infinitely small,
it follows that the magnetic force at any internal point, as defined in § 48, is derivable
from a potential expressed by equation (3). :

52. The expressions for the resultant force at any point, and its direction, may be
immediately obtained when the potential function has been determined, by the rules
of the differential calculus. Thus, if V has been determined in terms of the rectan-
gular coordinates, £, 7, {, of the point P, the three components, X, Y, Z, of the resultant
force on this point will be given, in virtue of LaprLace’s fundamental theorem enun-
ciated in § 50, by the formulz,

av av 'A%
— Y= L=—

X= -—%, Z[‘E-.(‘l),

where the negative signs are introduced, because the potential is estimated in such a
way that it diminishes in the direction along which a north pole is urged. If we
take the expression (3) for V, and actually differentiate with reference to %, ,
under the integral signs, we obtain expressions for X, Y, and Z which agree with
the expressions that might have been obtained directly, by means of the first prin-
ciples of statics (see § 46), and thus the theorem is verified. Such a verification,
extended so as to be applicable to a body acting according to any law of force, consti- -
tutes virtually the ordinary demonstration of the theorem.

53. The formulz of the preceding paragraphs are applicable for the determination
'of the potential, and the resultant force at any point, whether within the magnetized
substance or not, according to the general definition of § 49. The case of a point in
the magnetized substance, according to the conventional second definition of § 48,
cannot present itself in problems with reference to the mutual action between two
actual magnets. This case being therefore excluded, we may proceed to the investi-
gations indicated in § 47.

54. In the method which is now to be followed, the magnetized substances con-
sidered must be conceived to be divided into an infinite number of infinitely small
parts, and the actual magnetism of each part will be taken into account, whether in
determining the potential of the magnet at a given external point, or in investigating
the mutual action between two magnets. In the first place, let us determine the
potential due to an infinitely small element of a magnetized substance, and for this
purpose we may commence by considering an infinitely thin, uniformly magnetized
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bar of finite length. If m denote the strength of the bar, and if N and S be its north
and south poles respectively, its potential at any point, P, will be, according to
§§ 34 and 50,

_ﬂ_l:_ m
NP~ SP’
Let A denote the distance of the point of bisection of the bar from P, and 4 the angle

between this line and the direction of the bar measured from its centre towards its
north pole. Then, if @ be the length of the bar, the expression for the potential becomes

1 1
m{(AQ-—aA cos{ +i—a“’)?’f (A%+aA cos +:1—a )? Ik
By expanding this in ascending powers of a, and neglecting all the terms after the

first, we find for the potential of an infinitely small bar magnet,

ma cos §
AQ

If now we suppose any number of such bar-magnets to be put together so as to
constitute a mass magnetized in parallel lines, infinitely small in all its dimensions,

the values of 4 and A, and consequently the value of (%}a, will be infinitely nearly

the same for all of them, and the product of this into the sum of the values of ma
for all the bar-magnets will express the potential of the entire mass. Hence, if the
total magnetic moment be denoted by w, the potential will be equal to

pcosi

Az -
Now if we conceive the bars to have been arranged so as to constitute a uniformly
magnetized mass, occupying a volume ¢, we should have (§ 30.) for the intensity of

magnetization, zzg Hence if ¢ denote the volume of an infinitely small element of

uniformly magnetized matter, and ¢ the intensity of its magnetization, the potential
which it produces at any point P, at a finite distance from it, will be

ip.cos

AT
where A denotes the distance of P from any point, E, within the element, and 4 the
angle between E P and a line drawn through E, in the direction of magnetization of
the element, towards the side of it which has northern polarity.

55. Let us now suppose the element E to be a part of a magnet of finite dimen-
sions, of which it is required to determine the total potential at an external point, P.
Let £, 4, { be the coordinates of P, referred to a system of rectangular axes, and let
z, y, = be those of E.  'We shall have

A'=(E—a)'+(1—y)+(E—2)"
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and, if Z, m, n denote the direction cosines of the magnetization at E,

cos ozlgzw mnzy_l_né’zz
Hence the expression for the potential of the element E becomes
i UE—2) +mn—y) +nf—2)}
{E—2*+ =9+ -2
Now the potential of a whole is equal to the sum of the potentials of all its parts,
and hence, if we take p=dr dy dz, we have, by the integral calculus, the expression,
i.E—2)+im.(n—y) +in.({—2) -
dydz . . . . . . . )
VLSS T e e s ©)
for the potential at the point P, due to the entire magnet*,

56. This expression is susceptible of a very remarkable modification, by integration
by parts. Thus we may divide the second member into three terms, of which the

following is one:
il.(E—a)dz
f‘/f E .Z’)Q—|—(1) y)a (g 2)2} dydz

Integrating here by parts, with reference to x, we obtain
d(il)

LSS =%5 )= S L asdya,

where the brackets enclosing the double integral denote that the variables in it must
belong to some point of the surface. If A, w,» denote the direction cosines of a
normal to the surface at any point [£,7,{], and dS an element of the surface, we
may take dy dx=A.dS, and hence the double integral is reduced to

/- [il]r.dS
(a] ’

and, as we readily see by tracing the limits of the first integral with reference to ,
for all possible values of y and % this double integral must be extended over the
entire surface of the magnet. By treating in a similar manner the other two terms
of the preceding expression for V, we obtain, finally,

d(id) | d(im) |, d(in)
Ve /'[zl]’\+[im]f/«+[m]" s~/ do T dy “_ dvdyds.

The second member of this equation is the expression for the potential of a certain
complex distribution of matter, consisting of a superficial distribution, and a conti-
nuous internal distribution. The superficial-density of the distribution on the surface,

* From the form of definition given in the second foot-note on § 48, for the magnetic force at an internal
point, it may be shown that the expression (5), as well as the expression (8), is applicable to the potential at
any point, whether internal or external. The same thing may be shown by proving, as may easily be done,

that the investigation of § 56 does not fail or become nugatory when (£, , ¢) is included in the limits of inte-
gration,
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and the density of the continuous distribution at any internal point, are expressed re-
spectively by [i/]a4-[im]w+[in]y, and—{%ll+%%n—)+d—¢(;§)}. ‘Hence we infer that the
action of the complete magnet upon any external point is the same as would be pro-
duced by a certain distribution of imaginary magnetic matter, determinable by
means of these expressions, when the actual distribution of magnetism in the magnet
is given*. The demonstration of the same theorem, given above (§ 42), illustrates
in a very interesting manner the process of integration by parts applied to a triple
integral.

57. The mutual action of any two magnets, considered as the resultant of the
mutual actions between the infinitely small elements into which we may conceive
them to be divided, consists of a force and a couple of which the components will
be expressed by means of six triple integrals. Simpler expressions for the same
results may be obtained by employing a notation for subsidiary results derived from
triple integration with reference to one of the bodies, in the following manner.

58. Let us in the first place determine the action exerted by a given magnet, upon
an infinitely thin, uniformly and longitudinally magnetized bar, placed in a given
position in its neighbourhood.

We may suppose the rectangular coordinates, , 7, , of the north pole,and £, #, ' of
the south pole of the bar to be given, and hence the components, X, Y,Z and X', Y', Z/,
of the resultant forces, at those points, due to the other given magnet, may be regarded
as known. Then, if 8 denote the ““strength” of the bar-magnet, the components of
the forces on its two poles will be respectively,

BX, BY, BZ, on the point (&, 7, {),
and —BX!, —BY', —BZ, on the point (¢, 7, 7).
The resultant action due to this system of forces may be determined by means of the
elementary principles of statics. Thus if we conceive the forces to be transferred to

the middle of the bar by the introduction of couples, the system will be reduced to a
force, on this point, whose compenents are

B(X_X’)’ 6(Y_‘Y,)a 6(Z—ZI)’

and a couple, whose components are
{pa+z). 56-n-pr+v) .5 -0}
{BX+X) 3G~ —BZ+2) . =)},
{BOYHY) 5 (E—0)=BX+X) . (=) .

* This very remarkable theorem is due to Poissor, and the demonstration, as it has been just given in the
text, is to be found in his first memoir on Magnetism. The demonstration which I have given in § 42 may be
regarded as exhibiting, by the theory of polarity, the physical principles expressed in the analytical formulz,
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59. If 7, m, n denote the direction cosines of a line drawn along the bar, from its
middle towards its north pole, and if a be the length of the bar, we shall have
t¢—t=al, p—r=am, {—{=an. |
Hence, if the bar be infinitely short, and if «, y, = denote the coordinates of its
middle point, we have

X
X— X’—Q( al—l—d am+—— . an,

dY
Y—Y’—ﬂ al—l—d . am+—- . an,

dZ dz
and Z— Z'_ 7 al—{-@ .am+-—= . an

Multiplying each member of these equations by 3, we obtain the expressions for the
components of the force in this case ; and the expressions for the components of the
couples are found in their simpler forms, by substituting for ¢—¥, &c. their values
given above ; and, on account of the infinitely small factor which each term contains,
taking 2X, 2Y, and 2Z, in place of X+X', Y4Y', and Z+Z'.

60. Let us now suppose an'infinite number of such infinitely small bar-magnets
to be put together so as to constitute a mass, infinitely small in all its dimensions,
uniformly magnetized in the direction (/, m, ») to such an intensity that its magnetic
moment is w. We infer, from the preceding investigation, that the total action on
this body, when placed at the point z, y, 3, will be composed of a force whose com-
ponents are

dX ., dX dX
: ;,;l+—@m+w),
dY
( I+ 5 m ),
dZ., dZ dZ:

acting at the centre of gravity of the solid supposed homogeneous; and a couple of
which the components are

f/’(Zm—Yn))
(b(X?’l—Zl),
w(Yi—Xm).

61. The preceding investigation enables us, by means of the integral calculus, to
determine the total mutual action between any two given magnets. For, if we take
X, Y, Z to denote the components of the resultant force due to one of the magnets,
at any point (z,y, %) of the other, and if ¢ denote the intensity and (4 m, ) the direc-
tion of magnetization of the substance of the second magnet at this point, we may
take p=1. drdydz in the expressions which were obtained, and they will then express
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‘the action which one of the magnets exerts upon an element dadydz of the other.
To determine the total resultant action, we may transfer all the forces to the origin
of coordinates, by introducing additional couples ; and, by the usual process, we find,
for the mutual action between the two magnets, a force in a line through this peint,
and a couple, of which the components, F, G, H, and L, M, N, are given by the
equations

F—‘[[/‘ (zldX—l—zm —I—m >dmdya’z
G f.[/(Zld.z' +zde +m )dmdg/dz
H M(zl +zm -l—m )dxdg/dz

J

L—.—:fff{imZ—inY+y(il%%+im%+md ) (Zldz +1m -I—m——)} dxdydx A

M/ {inX it (i imGy in ) —a (il -+ imiin) dadyds 47

N?[[/l{zlY—sz-Jr-x(zl-——l—zmdy +zndz> y(zldx—l—zm +mdz)}dmdydz

62. If, in the second members of these equations, we employ for X, Y, Z respectively
their values obtained, as indicated in equations (4) of § 52, by the differentiation of the
expression (5) for V in § 55, we obtain expressions for F, G, H, L, M, N, which may
readily be put under symmetrical forms with reference to the two magnets, exhibiting
the parts of those quantities depending on the mutual action between an element of
one of the magnets, and an element of the other. Again, expressions exhibiting the
mutual action between any element of the imaginary magnetic matter of one magnet,
and any element of the imaginary magnetic matter of the other, may be found by
first modifying by integration by parts, as in § 56, from the expressions which we
have actually obtained for F, G, H, L, M, N; and then substituting for X, Y, and Z
their values obtained by the differentiation of the expression (3) for V.

It is unnecessary here to do more than indicate how such other formulee may be
derived from those given above; for whenever it may be required, there can be no
difficulty in applying the principles which have been established in this paper to
obtain any desired form of expression for the mutual action between two given
magnets.
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§§ 63 and 64*. On the Expression of Mutual Action between two Magnets by means of
the Differential Coefficients of a Function of their relative Position.

63. By a simple application of the theory of the potential, it may be shown that
the amount of mechanical work spent or gained in any motion of a permanent mag-
net, effected under the action of another permanent magnet in a fixed position, depends
solely on the initial and final positions, and not at all upon the positions successively
occupied by the magnet in passing from one to the other. Hence the amount of work
requisite to bring a given magnet from being infinitely distant from all magnetic
bodies, into a certain position in the neighbourhood of a given fixed magnet, depends
solely upon' the distributions of magnetism in the two, and on the relative position
which they have acquired. Denoting this amount by Q, we may consider Q as a
function of coordinates which fix the relative position of the two magnets; and the
variation which Q experiences when this is altered in any way will be the amount of
work spent or lost, as the case may be, in effecting the alteration. This enables us
to express completely the mutual action between the two magnets, by means of dif-
ferential coefficients of Q, in the following manner :—

If we suppose one of the magnets to remain fixed during the alterations of relative
position conceived to take place, the quantity Q will be a function of the linear and an-
gular coordinates by which the variable position of the other is expressed. Without
specifying any particular system of coordinates to be adopted, we may denote by d,Q
the augmentation of Q when the moveable magnet is pushed through an infinitely
small space d% in any given direction, and by d,Q the augmentation of Q when it is
turned round any given axis, through an infinitely small angle dp. Then, if F denote
the force upon the magnet in the direction of d%, and L the moment round the fixed
axis of all the forces acting upon it (or the component, round the fixed axis, of the
resultant couple obtained when all the forces on the different parts of the magnet are
transferred to any point on this axis), we shall have

—Fdi=d,Q, and —Ldp=d,Q,
since a force equal to —F is overcome through the space d¢ in the first case, and a

couple, of which the moment is equal to —L, is overcome through an angle dp in the
second case of motion. Hence we have

5,Q
—_ &
F=—"-

,Q
L=—"%"

64. It only remains to show how the function Q may be determined when the distri-
butions of magnetism in the two magnets and the relative positions of the bodies are

* Communicated June 20, 1850,
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given. For this purpose, let us consider points P and P/, in the two magnets respect-
ively, and let their coordinates with reference to three fixed rectangular axes be de-
noted by z, y, = and 2/, 3/, 2'; let also the intensity of magnetization at P be denoted
by 4, and its direction cosines by /, m, n; and. let the corresponding quantities, with
reference to P', be denoted by ¢, 7, ', n'. Then it may be demonstrated without
difficulty that

42 _i_ 42 l dﬂ_l
e A A
Q=/ffffdzdydzd’ dy' dz'ii"| Ul 7+ lm' 7 i +in'
2L 2L 42 _i_
U ! | —
+ml dyda' +mm dydy' +mn dydz'
sloal gl
d = S
+nl dzdx’_l_ nm dzdy’._l_ N ed? |

where, for brevity, A is taken to denote {(x—2a')24(y—7')2+ (x—2')2}#, and the diffe-
rentiations upon % are merely indicated. Now, by any of the ordinary formule for

the transformation of coordinates, the values of , y, 2, and 2/, ', 2/, may be expressed in
terms of coordinates of the point P with reference to axes fixed in the magnet to which
it belongs, of the coordinates of the point P’ with reference to axes fixed in the
other, and of the coordinates adopted to express the relative position of the two
magnets: and so the preceding expression for Q may be transformed into an expression
involving explicitly the relative coordinates, and containing the coordinates of the
points P and P' in the two bodies only as variables in integrations, the limits of which,
depending only on the forms and dimensions of the two bodies, are absolutely con-
stant. Thus Q is obtained as a function of the relative coordinates of the bodies,
and the solution of the problem is complete.

There is no difficulty in working out the result by this method, so as actually to
obtain either the expressions (6) and (7) of § 61, or the expressions indicated in § 62,
although the process is somewhat long.

The method just explained for expressing the mutual action between two magnets in
terms of a function of their relative position, has been added to this chapter rather for
the sake of completing the mathematical theory of the division of the subject to which
it is devoted, than for its practical usefulness in actual problems regarding magnetic
force, for which the most convenient solutions may generally be obtained by some of
the more synthetical methods explained in the preceding parts of the chapter. There
is however a far more important application of the principles upon which this last
method is founded which remains to be made. The mechanical value of a distribu-
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tion of magnetism, although it has not, I believe, been noticed in any writings hitherto
published on the mathematical theory of magnetism, is a subject of investigation of
great interest, and, as I hope on a later occasion to have an opportunity of showing,
of much consequence, on account of its maximum and minimum problems, which
lead to demonstrations of important theorems in the solutions of inverse problems
regarding magnetic distribution.



